Acceso a usuarios
Bienvenid@

Tutores

MARIA ALEJANDRA BRAVO DE LA PARRA

Instituto de Biotecnología (IBT)

Contacto

Teléfono: 777 3291635
Email: alejandra.bravo@ibt.unam.mx
Sitio web: Visitar sitio web

Campos de conocimiento

Bioquímica
Biotecnología
Microbiología Molecular

Líneas de investigación

Proteínas insecticidas de Bacillus thuringiensis.
1. Aislamiento y diseño de nuevas toxinas Cry insecticidas a partir de una colección de cepas de Bacillus thuringiensis o por medio de mutagénesis de los genes que codifican para estas toxinas. 2.Estudio del modo de acción de las toxinas Cry, así como los mecanismos de resistencia que los insectos han desarrollo para contender con ellas. 3. Entender a nivel molecular la sinergia entre las toxinas Cry y Cyt para poder manipularla y que funcione para otros ordenes de insectos.

Publicaciones

154 Rubio VP, Bravo A, and Olmos J. 2017 Identification of a Bacillus thuringiensis Surface-Layer-Protein with Cytotoxic Activity against MDA-MB-231 Breast Cancer Cells. In Press J Microbiol Biotechnol 27: 36-42 doi: 10.4014/jmb.1607.07020. ISSN: 1017-7825
155. Portugal L, Muñoz-Garay C, Martinezde Castro DL, Soberón M, Bravo A. 2017 Toxicity of Cry1A toxins from Bacillus thuringiensis to CF1 cells does not involve activation of adenylate cyclase/PKA signaling pathway. Insect Biochem Mol Biol 80:21-31 doi 10.1016/j.ibmb.2016.11.004 ISSN 0965-1748
156. Xiao Y, Dai Q, Hu R, Pacheco S, Yang Y, Liang G, Soberón M, Bravo A, Liu K, Wu K. 2017. A single point mutation resulting in cadherin mis-localization underpins resistance against Bacillus thuringiensis toxin in cotton bollworm. J. Biol Chem. 292:2933-2943 doi: 10.1074/jbc.M116.768671. ISSN 1083-351X
157. Onofre J, Gaytan M, Peña AI, García-Gomez BI, Gómez I, Bravo A and Soberón M. 2017. Identification of Aminopeptidase-N2 as a Cry2Ab binding protein in Manduca sexta. Peptides 98: 93-98 pii: S0196-9781(17)30011-6. http://dx.doi.org/10.1016/j.peptides.2017.01.006 ISSN: 0196-9781
158. Zhou Z, Liu Y, Liang G, Huang Y, Bravo A, Soberon M, Song F, Zhou X, Zhang J. 2017. Insecticidal specificity of Cry1Ah to Helicoverpa armigera is determined by bindindg APN1 through domain II loops 2 and 3. Appl Environm Microbiol, 83: e02864-16, 1-11doi: 10.1128/AEM.02864-16. ISSN 0099-2240
159. Jiang J, Huang Y, Shu Ch, Soberón M, Bravo A, Liu Ch, Song F, Lai J, and Zhang J. 2017 Identification of midgut proteins from Holotrichia oblita bound with Cry8-like toxin Appl Environm Microbiol 83: e00541-17, 1-11 doi: 10.1128/AEM.00541-17 ISSN 0099-2240
160. Ocelotl J, Sánchez J, García-Gómez BI, Gómez I, Tabashnik BE, Bravo A and Soberón M. 2017. ABCC2 is associated with Bacillus thuringiensis Cry1Ac toxin oligomerization and membrane insertion in diamondback moth. Scientific Rep. 7, 2386: 1-9 doi: 10.1038/s41598-017-02545-y. ISSN 2045-2322
161. Li J, Ma Y, Yuan W, Xiao Y, Liu Ch, Wang J, Peng J, Peng R, Soberón M, Bravo A*, Yang Y, Liu K. 2017. FOXA transcriptional factor modulates insect susceptibility to Bacillus thuringiensis Cry1Ac toxin by regulating the expression of toxin-receptor ABCC2 and ABCC3 genes. Insect Bioch Mol Biol 88: 1-11 ISSN 0965-1748
162. Pacheco S, Gómez I, Sanchez J, García-Gómez B-I, Soberón M, Bravo A 2017An intramolecular salt bridge in Bacillus thuringiensis Cry4Ba toxin is involved in the stability of Helix -3, which is needed for oligomerization and insecticidal activity. Appl. Environm. Microbiol. 83:e01515-17. https://doi.org/10.1128/AEM.01515-17. ISSN 0099-2240
163. Martínez de Castro DL, Gómez I, Bravo A and Soberón M. 2017 Identification of Bacillus thuringiensis Cry1AbMod binding-proteins from Spodoptera frugiperda Peptides 98: 99-105 https://doi.org/10.1016/j.peptides.2017.09.013
164. Liu Y, Wang Y, Shu Ch, Lin K, Song F, Bravo A, Soberón M, Zhang J 2017 Cry64Ba and Cry64Ca, two ETX/MTX2 Bacillus thuringiensis insecticidal proteins against hemipteran pests Appl Environm Microbiol 84, e01996-17. ISSN 0099-2240
165. Chen,W.B. Lu,G.Q. Cheng,H.M. Liu,C.X. Xiao,Y.T. Xu,C. Shen,Z.C. Soberon,M. Bravo,A. Wu, K.M. 2017. Transgenic cotton co-expressing chimeric Vip3AcAa and Cry1Ac confers effective protection against Cry1Ac-resistant cotton bollworm Transgenic Res, 26, 763-774. ISSN 0962-8819 doi 10.1007/s11248-017-0048-8
166. Shabbir MZ, Quan Y, Wang Z, Bravo A, Soberón M, He K. 2018 Characterization of the Cry1Ah resistance in Asian corn Borer and its cross-resistance to other Bacillus thuringiensis toxins.Scientific Rep. 8(1):234. doi: 10.1038/s41598-017-18586-2. ISSN 20452322
167. Soberón M, Portugal L, Garcia-Gómez BI, Sánchez J, Onofre J, Gómez I, Pacheco S, Bravo A. 2018 Cell lines as models for the study of Cry toxins from Bacillus thuringiensis. Insect Biochem Mol Biol. 93:66-78. doi: 10.1016/j.ibmb.2017.12.008. ISSN‎: ‎0965-1748
168. Torres-Quintero MC, Gómez I, Pacheco S, Sánchez J, Flores H, Osuna J, Mendoza G, Soberón M, Bravo A. 2018. Engineering Bacillus thuringiensis Cyt1Aa toxin specificity from dipteran to lepidopteran toxicity Scientific Rep, 8, 4989. doi: 10.1038/s41598-018-22740-9. ISSN 20452322
169. Wang Z, Fang L, Zhou Z, Pacheco S, Gómez I, Song F, Soberón M, Zhang J, and Bravo A. 2018. Specific binding between Bacillus thuringiensis Cry9Aa and Vip3Aa toxins synergizes their toxicity against Asiatic rice borer (Chilo suppressalis) J.Biol.Chem. 293:11447-11458 doi: 10.1074/jbc.RA118.003490. ISSN 1083-351X
170. Rocha-Munive MG, Eguiarte LE, Soberón M, Castañeda S, Niaves E, Scheinvar E, Mota-Sanchez D, Rosales-Robles E, Nava-Camberos U, Martínez-Carrillo JL, Blanco CA, Bravo A* and Souza V*. 2018 Evaluation of the impact of genetically modified cotton after 20 years of cultivation in Mexico. Front Bioeng Biotechnol 6:82 . doi: 10.3389/fbioe.2018.00082 ISSN:2296-4185
171. Wang K, Shu Ch, Soberon M, Bravo A, Zhang J. 2018 A systematic characterization procedure for Bacillus thuringiensis strains through Multi-Locus Sequence Typing. J Invertebr Pathol 155, 5-13 doi: 10.1016/j.jip.2018.04.009 ISSN 0022-2011
172. Liu L, Chen Z, Yang Y, Xiao Y, Liu Ch, Ma Y, Soberón M, Bravo A*, Yang Y*, Liu K*. 2018. A single amino acid polymorphism in ABCC2 loop 1 is responsible of differential toxicity of Bacillus thuringiensis Cry1Ac toxin in different Spodoptera (Noctuidae) species. Insect Biocehm Mol Biol. 100: 59-65 ISSN‎: ‎0965-1748
173. Gómez I, Rodríguez-Chamorro D, Flores-Ramírez G, Grande R, Portugal F, Sanchez J, Pacheco S, Bravo A, and Soberon M. 2018 Spodoptera frugiperda(J. E. Smith) aminopeptidase N1 is functional receptor of Bacillus thuringiensis Cry1Ca toxin. Appl Environ Microbiol 84: e01089-18 doi: 10.1128/AEM.01089-18.ISSN 1098- 5336
174. Pacheco S, Gómez I, Sanchez J, García-Gómez BI, Czajkowsky D, Zhang J, Soberón M, and Bravo A. 2018 Helix -3 inter-molecular salt bridges and conformational changes are essential for toxicity of Bacillus thuringiensis 3D-Cry toxin family Scientific Rep. 8, 10331 doi: 10.1038/s41598-018-28753-8. ISSN 20452322
175. Gómez I, Ocelotl J, Sanchez J, Garcia-Gomez BI, Lima Ch, Martins E, Rosales-Juarez A, Aguilar-Medel S, Monnerat R, Peña G, Bravo A and Soberón M. 2018 Enhancement of Bacillus thuringiensis Cry1Ab and Cry1Fa toxicity to Spodoptera frugiperda by domain III mutations indicates two distinct limiting steps for toxicity. Appl Environ Microbiol 84: e01393-18 doi: 10.1128/AEM.01393-18. ISSN 1098- 5336
176. Peña A, Grande R, Sánchez J, Tabashnik BE, Bravo A, Soberón M and Gómez 1. 2018. Functional role of C-terminal protoxin domain of Bacillus thuringiensis Cry1Ab toxin in binding to GPI-anchored receptors. J. Biol. Chem. 293: 20263-20272 doi: 10.1074/jbc.RA118.005101 ISSN 1083-351X
177. Sena Da Silva IH, Goméz I, Sánchez J, Martínez de Castro DL, Valicente FH, Soberón M, Polanczyk RA and Bravo A. 2018. Identification of midgut membrane proteins from different instars of Helicoverpa armigera (Lepidoptera: Noctuidae) that bind to Cry1Ac toxin. PlosONE 13: e0207789 doi.org/10.1371/journal.pone.0207789 ISSN 1932-6203
178. Bravo A*, López-Diaz JA, Yamamoto T, Harding K, Zhao JJ, Mendoza G, Onofre J, Torres MC, Nelson ME, Wu G, Sethi A, and Soberon M. 2018 Susceptible and mCry3A resistant corn rootworm larvae killed by a non-hemolytic Bacillus thuringiensis Cyt1Aa mutant. Scientific Rep. 8(1):17805. doi: 10.1038/s41598-018-36205-6. ISSN 20452322
179. Wan L, Lin J, Du H, Bravo A, Soberón M, Sun M, Peng D 2019 Bacillus thuringiensis targets the host intestinal epithelial junctions for successful infection of Caenorhabditis elegans. doi: 10.1111/1462-2920.14528. ISSN, 1462-2912. Environ. Microbiol 21:1086-1098
180. Samaniego-Gaxiola JA, Pedroza-Sandoval A., Bravo A, Sanchez J, Peña-Chora G, Mendoza-Flores D, Chew-Madinaveitia Y, Mascorro AG. 2019 Fumigacion con acido acetico y antimicrobianos para disminuir mortandad de Chrisoperla carnea por infección indeterminada. Revista Mexicana de Ciencias Agrícolas. 10: 973-986 ISSN: 2007-9230 doi: 10.29312/remexca.v10i5.1648
181. Ma Y., Zhang J., Xiao Y., Yang Y., Liu Ch., Peng R., Yang Y., Bravo A., Soberon M., Liu K. 2019 The cadherin Cry1Ac binding-region is necessary for the cooperative effect with ABCC2 transporter enhancing insecticidal activity of Bacillus thuringiensis Cry1Ac toxin. Toxins 11:538 doi:10.3390/toxins11090538 ISSN 2072-6651
182. Guo, Z., Gong, L., Kang, S., Zhou, J., Sun, D., Qin, J., Guo, L., Zhu, L., Luo, L., Bai, Y., Bravo, A., Soberón, M., Zhang Y. 2020. Comprehensive analysis of Cry1Ac protoxin activation mediated by midgut proteases in susceptible and resistant Plutella xylostella (L.). Pest. Biochem.& Physiol. 163:23-30.DOI 10.1016/j.pestbp.2019.10.006 ISSN 1095-9939
183. García-Gómez, BI., Cano, SN., Zagal, EE., Dantán-Gonzalez, E., Bravo A. and Soberón M. 2019. Insect Hsp90 chaperone assist Bacillus thuringiensisCry toxicity by enhancing protoxin binding to receptor and by protecting protoxin from gut protease degradation. 2019. mBio 10(6):e02775-19. doi: 10.1128/mBio.02775-19. ISSN 2150-7511
184. Shabbir, MZ., Zhang, T., Prabu, S., Wang, Y., Wang, Z., Bravo, A., Soberón, M., He, K. 2019. Identification of Cry1Ah-binding proteins through pull down and gene expression analysis in Cry1Ah-resistant and susceptible strains of Ostrinia furnacalis. Pest Biochem Physiol 163:200-208 ISSN 1095-9939 doi 10.1016/j.pestbp.2019.11.014
185. Wei, W., Pan, Sh., Ma, Y., Xiao, Y., Yang, Y., He, Sh., Bravo, A., Soberón, M., Liu, K. 2020 GATAe transcription factor is involved in Bacillus thuringiensis Cry1Ac toxin receptor gene expression inducing toxin susceptibility. Insect Bioch Mol Biol. 118: e 103306 ISSN 0965-1748 doi.org/10.1016/j.ibmb.2019.103306
186. Gong L, Kang Z, Zhou J, Sun D, Guo L, Qin J, Zhu L, Bai Y, Ye F, Mazarin A, Wu Q, Wang S, Xu B, Yang Z, Bravo A, Soberón M, Guo Z, Wen L, Zhang Y. 2020 Reduced expression of a novel midgut trypsin gene involved in protoxin activation correlates with Cry1Ac resistance in a laboratory-selected strain of Plutella xylostella (L.). Toxins 12:76. doi: 10.3390/toxins12020076. ISSN 2072-6651
187. Anaya, P., Onofre , J., Torres-Quintero, MC., Sánchez , J., Gill, SS., Bravo A., and Soberón M. 2020 Oligomerization is a key step for Bacillus thuringiensis Cyt1Aa insecticidal activity but not for toxicity against red blood cells. Insect Biochem Mol Biol. 119:103317. doi: 10.1016/j.ibmb.2020.103317 ISSN 0965-1748
188. Gómez I, Ocelotl J, Sánchez J, Aguilar-Medel S, Peña-Chora G, Lina-Garcia L, Bravo A, Soberón M. 2020. Bacillus thuringiensis Cry1Ab Domain III -22 Mutants with Enhanced Toxicity to Spodoptera frugiperda (J. E. Smith). Appl Environm Microbiol 86: e01580-20 ISSN 0099-2240 Doi: 10.1128/AEM.01580-20
189. Jin M, Yang Y, Shan Y, Chakrabarty S, Cheng Y, Soberón M, Bravo A, Liu K, Wu K, Xiao Y 2020 Two ABC transporters are differentially involved in the toxicity of two Bacillus thuringiensis Cry1 toxins to the invasive crop-pest Spodoptera frugiperda (J.E. Smith). Pest Managem Sciences 77: 1492-1501 Doi 10.1002/ps.6170 ISSN: 1526-4998
190. Onofre J, Pacheco S, Torres-Quintero MC, Gill SS, Soberon M and Bravo A. 2020. The Cyt1Aa toxin from Bacillus thuringiensis inserts into target membranes via different mechanisms in insects, red blood cells, and lipid liposomes J. Biol Chem. 295: 9606-9617 ISSN 0021-9258 doi: 10.1074/jbc.RA120.013869.
191 Pacheco S, Quiliche JPJ, Gómez I, Sánchez J, SoberónM and Bravo A. 2020. Rearrangement of N-Terminal α-Helices of Bacillus thuringiensis Cry1Ab Toxin Essential for Oligomer Assembly and Toxicity. Toxins (Basel) 12: 647 doi 10.3390/toxins12100647. ISSN 2072-6651
192. Shi J, Zhang F, Chen L, Bravo A, Soberón M, Sun M.. 2020. Systemic mitochondrial disruption is a key event in the toxicity of bacterial pore-forming toxins to Caenorhabditis elegans. Environm Microbiol. 23: 4893-4907doi 10.1111/1462-2920.15376 ISSN 1462-2920
193. Shu Ch, Yan G, Huang Sh, Geng Y, Soberón M, Bravo A, Geng L and Zhang J. 2020. Characterization of two novel Bacillus thuringiensis Cry8 toxins reveal differential specificity of protoxins or activated toxins against Chrysomeloidea coleopteran superfamily. Toxins (Basel) 12: 642 doi 10.3390/toxins12100642 ISSN 2072-6651
194. Wang Z, Wang K, Bravo A, Soberón M, Shu Ch, Zhang J. 2020. Coexistence of cry9A and vip3A gene in an identical plasmid of Bacillus thuringiensis indicates their synergistic insecticidal toxicity. J. Agricult Food Chem 68: 14081-14090 ISSN 1520-5118 doi: 10.1021/acs.jafc.0c05304.
195. Zhang J, Jin M, Yang Y, Liu L, Yang Y,
 Gómez I, Bravo A, Soberón M, Xiao Y and Liu K. 2020. The cadherin protein is not involved in susceptibility to Bacillus thuringiensis Cry1Ab or Cry1Fa toxins in Spodoptera frugiperda. Toxins (Basel) 12: 375 doi 10.3390/toxins12060375 ISSN 2072-6651
196. do Nascimento, NA., Torres-Quintero, MC., López Molina, S., Pacheco, S., Romão, TP., Pereira-Neves, A., Soberón, M., Bravo, A., Neves Lobo Silva-Filha, MH. 2020. Functional Bacillus thuringiensis Cyt1Aa is necessary to synergize Lysinibacillus sphaericus Binary toxin against Bin-resistant and refractory mosquito species. Appl Environm Microbiol.86: e02770-19. doi: 10.1128/AEM.02770-19. ISSN 1098- 5336
197. Zheng, Z., Zhang, Y., Liu, Zh., Don, Zh., Xie, Ch., Bravo, A., Soberón, M., Mahillon, J., Sun, M., and Peng D. 2020 The CRISPR-Cas systems were selectively inactivated during evolution of Bacillus cereus group for adaptation to diverse environments. The ISME Journal. 14: 1479-1493. doi: 10.1038/s41396-020-0623-5.
198. Yang Y., Huang X., Yuan W., Xiang, Y., Guo X., Wei, W., Soberón M., Bravo A., Liu K. 2021. Bacillus thuringiensis Cry toxin triggers autophagy activity that may enhance cell death. Pest Biochem Physiol.171: 104728 doi: 10.1016/j.pestbp.2020.104728 ISSN 1095-9939
199. Sena da Silva IH, Gómez I, Pacheco S, Sánchez J, Zhang J, Luque Castellane TC, Aparecida Desiderio J, Soberón M, Bravo A, Polanczyk RA. 2021. Bacillus thuringiensis Cry1Ab Domain III -16 Is Involved in Binding to Prohibitin, Which Correlates with Toxicity against Helicoverpa armigera (Lepidoptera: Noctuidae). Doi 0.1128/AEM.01930-20 ISSN 1098- 5336 Appl Enviromen Microbiol 87:e01930-20
200. Wang Z, Gan Ch, Wang J, Bravo A, Soberón M, Yang Q, and Zhang
J. 2021. Nutrient conditions determine the localization of Bacillus thuringiensis Vip3Aa protein in the mother cell compartment. Microb Biotech. 14: 551-560doi 10.1111/1751- 7915.13719 ISSN 1751-7915
201. López-Molina S, do Nascimento NA, Silva-Filha MH NL, Guerrero A, Sánchez J, Pacheco S, Gill SS, Soberón M, Bravo A. 2021 In vivo nanoscale analysis of the dynamic synergistic interaction of Bacillus thuringiensis Cry11Aa and Cyt1Aa toxins in Aedes aegypti. Plos Pathogens 17(1):e1009199. doi: 10.1371/journal.ppat.1009199. ISSN 1553-7366
202. JL de Oliveira; L Fernandes-Fraceto; A Bravo; RA Polanczyk. 2021 Encapsulation strategies for Bacillus thuringiensis: From now to the future. J Agric Food Chem. 69 (16), 4564-4577. doi.org/10.1021/acs.jafc.0c07118 ISSN 0021-8561; 1520-5118
203. Jin M, Yang Y, Shan Y, Chakrabarty S, Cheng Y, Soberon M, Bravo A, Liu K, Wu K, Xiao Y (2021) Two ABC transpòrters are differentialy involved in the toxicity of two Bacillus thuringiensis Cry1 toxins to the invasive crop-pest Spodoptera frugiperda (J.E. Smith). Pest Managem Science 77: 1492-1501
204. Liu Y, jin M, Wang L, Wang H, Xia Z, Yang Y,Bravo A, Soberon M, Xiao Y, Liu K. 2021 SfABCC2 transporter extracellular loops 2 and 4 are responsible for the Cry1Fa insecticidal specificity against Spodoptera frugiperda. Insects Biochem Mol Biol. 135: 103608 doi: 10.1016/j.ibmb.2021.103608. ISSN 0965-1748
205. Silva-Filha MH, Romão TP, Rezende TMT, Carvalho KS, Menezes HSG, Nascimento NA, Soberon M, Bravo A. 2021 Bacterial toxins active against mosquitoes: mode of action and resistance. Toxins 13: 523 doi.org/10.3390/toxins13080523
206. Zhang D., Jin M., Yang Y., Zhang J., Yang Y., Liu K., Soberon M., Bravo A., Xiao Y., Wu K. 2021 Synergistic resistance of Helicoverpa armillera to Bt toxins linked to cadherin and ABC transporters mutations. Insect Biochem Mol Biol 137: 103635. ISSN 0965-1748, doi: 10.1016/j.ibmb.2021.103635.
207. Xiao Y, Li W, Yang X, Xu P, Jin M, Yuan H, Zheng W, Soberon M, Bravo A, Wilson K, Wu K. (2021) Rapid spread of a densovirus in a major crop pest following wide-scale adoption of Bt-cotton in China. eLife, 10: e66913 ISSN: 2050-084X doi 10.7554/eLife.66913
208. Shi J, Zhang F, Chen L, Bravo A, Soberón M, Sun M. 2021 Systemic mitochondrial disruption is a key event in the toxicity of bacterial pore-forming toxins to Caenorhabditis elegans. Environ. Microbiol 23: 4896-4907 doi:10.1111/1462-2920.15376 ISSN 14622912, 14622920
209. Pacheco S, Gómez I, Chiñas M, Sánchez J, Soberón M, Bravo A. 2021.Whole Genome Sequencing Analysis of Bacillus thuringiensis GR007 Reveals Multiple Pesticidal Protein genes. Frontiers Microbiol, Evolution & Genomic Microbiol. doi: 10.3389/fmicb.2021.758314 12: 758314 pag1-13 ISSN 1664-302X
210. do Nascimento J., Goncalves KC, Pinto-Dias N, de Oliveira JL, Bravo A, Polanczyk RA, 2021. Adoption of Bacillus thuringiensis-based biopesticides in agricultural systems and new approaches to improve their use in Brazil. Biological Control, 104792, doi: 10.1016/j.biocontrol.2021.104792 ISSN 1049-9644
211. Guo,Z. Kang,S. Wu,Q. Wang,S. Crickmore,N. Zhou,X. Bravo,A. Soberon,M. Zhang,Y. 2021. The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host. PLoS Pathogens, 17, e1009917. ISSN: 1553-7374
212. Wu,K.M. Xiao,Y.T. Xu,P.J. Wilson,K. Bravo,A. Soberon,M. Yang,X.M. Yuan,H. Jin,M.H. Zheng,W.G. Li,W.J. 2021.Rapid spread of a symbiotic virus in a major crop pest following wide-scale adoption of Bt-cotton in China . Elife 10:e66913. doi: 10.7554/eLife.66913.
213. Guo L, Cheng Z, Qin J, Sun D, Wang S, Wu Q, Crickmore N, Zhou X, Bravo A, Soberón M, Guo Z, Zhang Y 2022. MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression. PLoS Genetics. In the press
214 Chongyu Liao, Minghui Jin, Ying Cheng, Yongbo Yang, Mario Soberón, Alejandra Bravo, Kaiyu Liu, and Yutao Xiao 2022 Bacillus thuringiensis Cry1Ac protoxin and activated toxin exert differential toxicity due to a synergistic interplay of cadherin with ABCC transporters in the cotton bollworm. AEM In the press

Circuito de Posgrado, Ciudad Universitaria
Alcaldía Coyoacán, C.P. 04510, México, CDMX

55 5623 7006
mdcbq@posgrado.unam.mx
UNAM Posgrado